

Year 12 Applications Units 3 & 4 Test 6 2016

Calculator Assumed Project Networks and Assignment Problems

STUDENT'S NAME

DATE: Friday 2nd September

TIME: 50 minutes

MARKS: 50

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (2 marks)

The Spicy Spoon restaurant has four payment counters. There are four people available for service. The cost of assigning each person to each counter is given in the following table.

	Job				
Person	1	2	3	4	
А	1	8	15	22	
В	13	18	23	28	
С	13	18	23	28	
D	19	23	27	31	

After minimising the rows and then the columns the following matrix was produced.

0	2	4	7	
0	0	0	1	
0	0	0	1	
2	1	0	0	

Determine the optimal job allocation(s) to this problem and the cost associated.

2. (14 marks)

Four tasks, A, B, C, and D must be completed. Four workers, James, Kane, Luke and Mick, will each do one task. Table 1 shows the time, in minutes, that each person would take to complete each of the four tasks.

	Worker				
Task	James	Kane	Luke	Mick	
А	26	21	22	25	
В	31	26	21	38	
С	29	26	20	27	
D	38	26	26	25	

Complete the cost matrix. (a)

26	21	22	
31		21	38
29	26		27
		26	25

(b) By subtracting the smallest number in each row, complete the row matrix. [2]

5		1	4	
10				
9	6		7	
13	1			

By subtracting the smallest number in each column, complete the column matrix. (c) [2]

0	0	
5	5	17
4	6	7
	1	

(d) Using a suitable method, show that the matrix in (c) is not suitable to determine the [2] optimal allocation. Explain your answer.

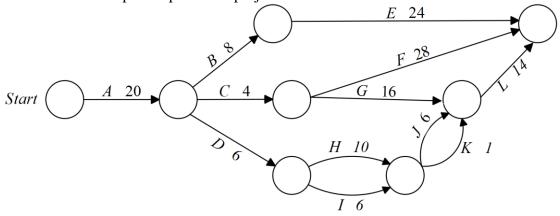
[1]

(e) Complete the steps necessary to produce a matrix from which the optimal allocation of tasks can be made. [3]

(f) Write the name of the person that should do each task for the optimal allocation of tasks. [2]

Task	Worker
А	
В	
С	
D	

- (g) Determine the minimum time needed to complete the four tasks if they are done;
 - (i) consecutively (one after the other)


[1]

(ii) simultaneously

[1]

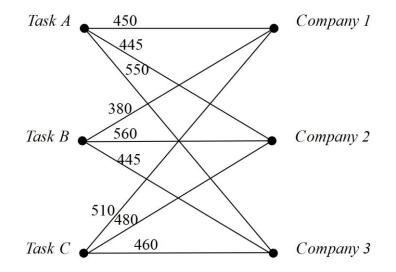
3. (11 marks)

The following project network gives the tasks and times, in days, that are required to be undertaken to complete a particular project.

- (a) State the minimum completion time for the project.
- (b) State the critical path(s).

Activity	Immediately Preceded by:	Activity	Immediately Preceded by:
А		G	
В		Н	
С		Ι	
D		J	
Е		K	
F		L	

(c) Complete the precedent table below.


[2]

[1]

[2]

- (d) How long can task C be delayed without affecting the minimum completion time?
 - [1]
- (e) Tasks J and K take twice as long as stated in the project network. What effect will this have? [2]
- (f) How long will it take to complete all twelve tasks if;
 - (i) one person is allocated to project? [1]
 - (ii) two people are allocated to the project? [2]
- 4. (3 marks)

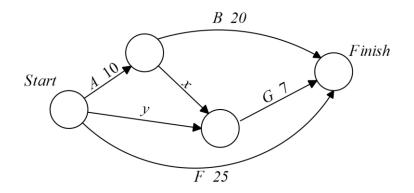
Represent the information shown in the following bipartite graph in a table.

5. (7 marks)

TASK	ACTIVITY	TIME (in hours)
А	Select exam questions	6
В	Do solutions to selected questions	4.5
С	Make necessary alterations	2
D	Chose the order of the questions	1.5
E	Type paper	3
F	Make cover sheet for exam	1
G	Print exam booklets	3
Н	Set up the hall	1.5
Ι	Mark exam papers	8

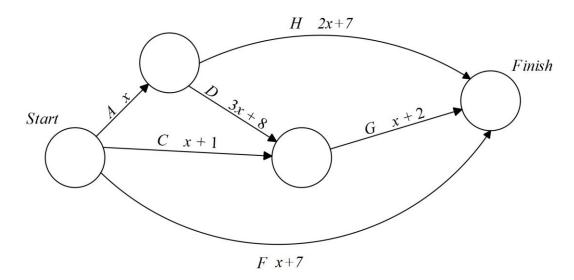
The successful preparation of a Year 12 Mathematics Examination requires the completion of the following tasks.

The order in which these task should be completed is:


Tasks A and H have no predecessors Task B must follow task A Task B must be completed before task C Tasks D and F must be after task C Task E must follow task D Task G must follow task F Task I must be after tasks E, G and H

(a) Construct a project network for these tasks.

[3]


- (b) State the critical path and minimum completion time for this project. [2]
- (c) Marking the exam booklets turned out to be a bigger job than expected. How much extra time could be devoted to this task without increasing the minimum time required? [1]

(d) How many teachers need to work on the exam to ensure it is completed in the minimum number of hours? [1]

Given that the critical path is AB, determine the possible value(s) of x

7. (2 marks)

Given that x > 0 determine the critical path and minimum completion time, in terms of *x*.

8. (9 marks)

	Worker				
Task	1	2	3		
А	<i>x</i> + 4	3x + 4	X		
В	x	<i>x</i> - 2	<i>x</i> + 1		
С	2 <i>x</i> - 1	<i>x</i> - 3	<i>x</i> - 1		
D	<i>x</i> + 6	<i>x</i> + 2	<i>x</i> + 6		

- (a) What changes need to be made to the table above to make it suitable to use the Hungarian Algorithm? [1]
- (b) Which expression is the highest value?
- (c) The table above is being used to maximise the allocation. Complete the first column with the expressions required in the first step of maximising the Hungarian Algorithm.

[3]

[1]

(d) The Hungarian Algorithm has been used to create the matrix below. Determine the optimal allocation of tasks and the cost (in terms of *x*) associated. [2]

2x	0	2x + 4	2x + 3	
1	3	0	0	
0	<i>x</i> + 2	x	x - 2	
0	4	0	5	

(e) One of the 3 workers will need to complete a second task. Which worker should the company pick? Justify your choice. [2]